Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
FEBS Open Bio ; 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38604998

RESUMEN

Tumor immunotherapy can be a suitable cancer treatment option in certain instances. Here we investigated the potential immunomodulatory effect of oral glycyrrhiza polysaccharides (GCP) on the antitumor function of γδT cells in intestinal epithelial cells in mice. We found that GCP can inhibit tumor growth and was involved in the regulation of systemic immunosuppression. GCP administration also promoted the differentiation of gut epithelia γδT cells into IFN-γ-producing subtype through regulation of local cytokines in gut mucosa. GCP administration increased local cytokine levels through gut microbiota and the gut mucosa Toll-like receptors / nuclear factor kappa-B pathway. Taken together, our results suggest that GCP might be a suitable candidate for tumor immunotherapy, although further clinical research, including clinical trials, are required to validate these results.

2.
Rapid Commun Mass Spectrom ; 38(6): e9693, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38356085

RESUMEN

RATIONALE: The volatile organic compounds (VOCs) of Lonicerae Japonicae flos (LJF) and Lonicera flos (LF) play a pivotal role in determining their sensory characteristics, medicinal properties, and subsequent impact on market pricing and consumer preferences. However, the differences and specificity of these VOCs remain obscure. Hence, it is crucial to conduct a comprehensive characterization of the VOCs in LJF and LF and pinpoint their potential differential VOCs. METHODS: In this study, headspace gas chromatography-ion mobility spectrometry (HS-GC/IMS) and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC/MS) were employed to comprehensively investigate the compositional characteristics and distinctions in VOCs between LJF and LF. Multivariate statistical analysis was used to identify candidate differential VOCs of LJF and LF samples. RESULTS: A total of 54 and 88 VOCs were identified using HS-GC/IMS and HS-SPME-GC/MS analysis, respectively. Primary VOCs detected in LJF include leaf alcohol, (E)-2-hexen-1-ol dimer, 2-octyn-1-ol, and (E)-3-hexen-1-ol. Key VOCs prevalent in LF encompass farnesol, heptanoic acid, octanoic acid, and valeric acid. Multivariate statistical analysis indicates that compounds such as phenethyl alcohol and leaf alcohol were selected as potential VOCs for distinguishing between LJF and LF. CONCLUSION: This research conducted a comprehensive analysis of the fundamental volatile components in both LJF and LF. It subsequently elucidated the distinctions and specificities within their respective VOC profiles. And this study enables differentiation between LJF and LF through the analysis of VOCs, offering valuable insights for enhancing the quality control of both LJF and LF.


Asunto(s)
Lonicera , Extractos Vegetales , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis , Microextracción en Fase Sólida/métodos , Espectrometría de Movilidad Iónica , Etanol
3.
Molecules ; 29(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338347

RESUMEN

The flower buds of three Panax species (PGF: P. ginseng; PQF: P. quinquefolius; PNF: P. notoginseng) widely consumed as health tea are easily confused in market circulation. We aimed to develop a green, fast, and easy analysis strategy to distinguish PGF, PQF, and PNF. In this work, fast gas chromatography electronic nose (fast GC e-nose), headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS), and headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) were utilized to comprehensively analyze the volatile organic components (VOCs) of three flowers. Meanwhile, a principal component analysis (PCA) and heatmap were applied to distinguish the VOCs identified in PGF, PQF, and PNF. A random forest (RF) analysis was used to screen key factors affecting the discrimination. As a result, 39, 68, and 78 VOCs were identified in three flowers using fast GC e-nose, HS-GC-IMS, and HS-SPME-GC-MS. Nine VOCs were selected as potential chemical markers based on a model of RF for distinguishing these three species. Conclusively, a complete VOC analysis strategy was created to provide a methodological reference for the rapid, simple, and environmentally friendly detection and identification of food products (tea, oil, honey, etc.) and herbs with flavor characteristics and to provide a basis for further specification of their quality and base sources.


Asunto(s)
Panax , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Nariz Electrónica , Microextracción en Fase Sólida/métodos , Panax/química , Espectrometría de Movilidad Iónica , Compuestos Orgánicos Volátiles/análisis , Flores/química ,
4.
J Pharm Biomed Anal ; 239: 115910, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38101240

RESUMEN

Xiaoyao Wan (XYW) is a prescription medicine of traditional Chinese medicine (TCM) with the effects of "soothing the liver and relieving depression," and "strengthening spleen and nourishing blood". XYW has been widely concerned in the treatment of depression and has become one of the commonly used classic formulas in clinical practice. However, the pharmacodynamic substance basis and the quality control studies of XYW are hitherto quite limited. Here, we aim to fully utilize an advanced ultra - performance liquid chromatography-quadrupole - Orbitrap mass spectrometry (UPLC-Q-Orbitrap-MS), headspace-solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) and headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) technique to deep characterization of the pharmacological substance basis and quantitatively evaluate the quality of XYW. Firstly, 299 compounds were identified or tentatively characterized, including 198 non-volatile organic compounds (n-VOCs) and 101 volatile organic compounds (VOCs). Secondly, principal component analysis (PCA) and hierarchical cluster analysis (HCA) was used to analyze quality differences in XYW at different manufacturers. Thirdly, a parallel reaction monitoring (PRM) method was established and validated to quantify the fourteen major effective substances in different manufacturers of XYW, which were chosen as the benchmarked substances to evaluate the quality of XYW. In conclusion, this study shows that the strategy provides a useful method for quality control of TCM and offers a practical workflow for exploring the quality consistency of TCM.


Asunto(s)
Medicamentos Herbarios Chinos , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Microextracción en Fase Sólida/métodos , Cromatografía Líquida de Alta Presión , Compuestos Orgánicos Volátiles/análisis
5.
Foods ; 12(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37761044

RESUMEN

This work was designed to investigate the dynamic changes process of non-volatile organic compounds (n-VOCs) and volatile organic compounds (VOCs) in mulberries during different growth periods using UPLC-Q-Orbitrap-MS, HS-SPME-GC-MS, and HS-GC-IMS. A total of 166 compounds were identified, including 68 n-VOCs and 98 VOCs. Furthermore, principal component analysis (PCA), random forest analysis (RFA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to analyze differences in mulberries at different ripening stages. A total of 74 compounds appeared or disappeared at different ripening periods and 24 compounds were presented throughout the growth process. Quantitative analysis and antioxidant experiments revealed that as the mulberries continued to mature, flavonoids and phenolic acids continued to increase, and the best antioxidant activity occurred from stage IV. Conclusively, an effective strategy was established for analyzing the composition change process during different growth periods, which could assist in achieving dynamic change process analysis and quality control.

6.
J Pharm Biomed Anal ; 236: 115715, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37769526

RESUMEN

Huo-Xiang-Zheng-Qi oral liquid (HXZQOL) is a well-known traditional Chinese medicine formula for the treatment of gastrointestinal diseases, with the pharmacologic effects of antiinflammatory, immune protection and gastrointestinal motility regulation. More significantly, HXZQOL is recommended for the treatment of COVID-19 patients with gastrointestinal symptoms, and it has been clinically proven to reduce the inflammatory response in patients with COVID-19. However, the effective and overall quality control of HXZQOL is currently limited due to its complex composition, especially the large amount of volatile and non-volatile active components involved. In this study, aimed to fully develop a comprehensive strategy based on non-targeted multicomponent identification, targeted authentication and quantitative analysis for quality evaluation of HXZQOL from different batches. Firstly, the non-targeted high-definition MSE (HDMSE) approach is established based on UHPLC/IM-QTOF-MS, utilized for multicomponent comprehensive characterization of HXZQOL. Combined with in house library-driven automated peak annotation and comparison of 47 reference compounds, 195 components were initially identified. In addition, HS-SPME-GC-MS was employed to analyze the volatile organic compounds (VOCs) in HXZQOL, and a total of 61 components were identified by comparison to the NIST database, reference compounds as well as retention indices. Secondly, based on the selective ion monitoring (SIM) of 24 "identity markers" (involving each herbal medicine), characteristic chromatograms (CCs) were established on LC-MS and GC-MS respectively, to authenticate 15 batches of HXZQOL samples. The targeted-SIM CCs showed that all marker compounds in 15 batches of samples could be accurately monitored, which could indicate preparations authenticity. Finally, a parallel reaction monitoring (PRM) method was established and validated to quantify the nine compounds in 15 batches of HXZQOL. Conclusively, this study first reports chemical-material basis, SIM CCs and quality evaluation of HXZQOL, which is of great implication to quality control and ensuring the authenticity of the preparation.


Asunto(s)
COVID-19 , Medicamentos Herbarios Chinos , Humanos , Qi , Cromatografía Líquida de Alta Presión/métodos , Medicina Tradicional China , Espectrometría de Masas , Medicamentos Herbarios Chinos/análisis
7.
Artículo en Inglés | MEDLINE | ID: mdl-37453388

RESUMEN

Shuang-Huang-Lian powder injection (SHLPI) is a natural drug injection made of honeysuckle, scutellaria baicalensis and forsythia suspensa. It has the characteristics of complex chemical composition and difficult metabolism research in vivo. LC-MS platform has been proven to be an important analytical technology in plasma metabolomics. Unfortunately, the lack of an effective sample preparation strategy before analysis often significantly impacts experimental results. In this work, twenty-one extraction protocols including eight protein precipitation (PPT), eight liquid-liquid extractions (LLE), four solid-phase extractions (SPE), and one ultrafiltration (U) were simultaneously evaluated using plasma metabolism of SHLPI in vivo. In addition, a strategy of "feature ion extraction of the multi-component metabolic platform of traditional Chinese medicine" (FMM strategy) was proposed for the in-depth characterization of metabolites after intravenous injection of SHLPI in rats. The results showed that the LLE-3 protocol (Pentanol:Tetrahydrofuran:H2O, 1:4:35, v:v:v) was the most effective strategy in the in vivo metabolic detection of SHLPI. Furthermore, we used the FMM strategy to elaborate the in vivo metabolic pathways of six representative substances in SHLPI components. This research was completed by ion migration quadrupole time of flight mass spectrometer combined with ultra high performance liquid chromatography (UPLC/Vion™-IMS-QTof-MS) and UNIFI™ metabolic platform. The results showed that 114 metabolites were identified or preliminarily identified in rat plasma. This work provides relevant data and information for further research on the pharmacodynamic substances and in vivo mechanisms of SHLPI. Meanwhile, it also proves that LLE-3 and FMM strategies could achieve the in-depth characterization of complex natural drug metabolites related to Shuang-Huang-Lian in vivo.


Asunto(s)
Medicamentos Herbarios Chinos , Ratas , Animales , Polvos , Espectrometría de Masas , Cromatografía Liquida , Medicamentos Herbarios Chinos/química , Cromatografía Líquida de Alta Presión/métodos
8.
Artículo en Inglés | MEDLINE | ID: mdl-37385125

RESUMEN

Qingjin Yiqi granules (QJYQ granules) are hospital preparations derived from ancient prescriptions under the guidance of academician Zhang Boli; they have the effect of invigorating qi and nourishing yin, strengthening the spleen and harmonizing the middle, clearing heat, and drying dampness, and are mainly used for patients with coronavirus disease 2019 (COVID-19) during the recovery period. However, their chemical constituents and pharmacokinetic characteristics in vivo have not been systematically investigated. In this study, 110 chemical constituents of QJYQ granules were identified using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), and a fast and sensitive ultra-high-performance liquid chromatography-mass spectrometry method was developed and validated for the target analytes. A rat model of lung-qi deficiency was established by subjecting mice to passive smoking combined with cold baths, and 23 main bioactive components of QJYQ granules were analyzed in normal and model rats after oral administration. The results showed that, compared to the normal group, there were significant differences in the pharmacokinetics of baicalin, schisandrin, ginsenoside Rb1, naringin, hesperidin, liquiritin, liquiritigenin, glycyrrhizic acid, and hastatoside in the model rats (P < 0.05), indicating that the in vivo processes of the above components changed under pathological conditions, suggesting that they may have pharmacological effects as active components. This study has helped identify QJYQ particulate substances and further supports their clinical application..


Asunto(s)
COVID-19 , Medicamentos Herbarios Chinos , Animales , Ratas , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Medicamentos Herbarios Chinos/química , Pulmón/química , Qi , Espectrometría de Masas en Tándem/métodos
9.
Biochem Biophys Res Commun ; 668: 90-95, 2023 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-37245294

RESUMEN

Antimicrobial resistance (AMR) crisis urges the development of new antibiotics. In the present work, we for the first time used bio-affinity ultrafiltration combined with HPLC-MS (UF-HPLC-MS) to examine the interaction between the outer membrane ß-barrel proteins and natural products. Our results showed that natural product licochalcone A from licorice interacts with BamA and BamD with the enrichment factor of 6.38 ± 1.46 and 4.80 ± 1.23, respectively. The interaction was further confirmed by use of biacore analysis, which demonstrated that the Kd value between BamA/D and licochalcone was 6.63/28.27 µM, suggesting a good affinity. To examine the effect of licochalcone A on BamA/D function, the developed versatile in vitro reconstitution assay was used and the results showed that 128 µg/mL licochalcone A could reduce the outer membrane protein A integration efficiency to 20%. Although licochalcone A alone can not inhibit the growth of E. coli, but it can affect the membrane permeability, suggesting that licochalcone A holds the potential to be used as a sensitizer to combat AMR.


Asunto(s)
Chalconas , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Chalconas/farmacología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Pliegue de Proteína
10.
Rapid Commun Mass Spectrom ; 37(7): e9479, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36690334

RESUMEN

RATIONALE: Shuang-Huang-Lian powder injection (SHLPI) is a well-known modern traditional Chinese medicine formula preparation (TCMFP) widely used to treat acute upper respiratory infections. However, SHLPI is extracted from pure Chinese medicine and administered through an injection, and many adverse reactions have been reported clinically. Therefore, it is necessary to characterize in depth the chemical composition of SHLPI and quantitatively analyze its potential allergenic components. METHODS: In this study, the samples were analyzed using ion mobility ultra-high-performance liquid chromatography-quadrupole time-of-flight-mass spectrometry (UHPLC-QTOF-MS) combined with a self-built database. Furthermore, the parallel reaction monitoring (PRM) model of ultra-high-performance liquid chromatography-quadrupole-Orbitrap-mass spectrometry (UHPLC-Q-Orbitrap-MS) was used to successfully quantify 10 representative bioactive components. RESULTS: Using this strategy 90 compounds were identified, the fragmentation pathways of five representative compounds in the five main components of SHLPI were summarized, and 10 components (neochlorogenic acid, chlorogenic acid, sweroside, forsythiaside A, luteoloside, isochlorogenic acid B, isochlorogenic acid C, baicalin, phillyrin, and baicalein) were determine as the quality markers of SHLPI based on UPLC-Q-Orbitrap-MS. CONCLUSIONS: This work comprehensively characterized the material basis of SHLPI, summarized the cracking laws of representative substances, and quantitatively analyzed 10 potential allergenic components. Therefore, this study could provide a basis for the quality control of SHLPI and the clinical rational use of drugs to reduce its adverse reactions.


Asunto(s)
Medicamentos Herbarios Chinos , Cromatografía Líquida de Alta Presión/métodos , Polvos , Medicamentos Herbarios Chinos/química , Espectrometría de Masas
11.
J Ethnopharmacol ; 301: 115833, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36252879

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Acute lung injury (ALI) is a common manifestation of COVID-19. Xuanfei Baidu Formula(XFBD) is used in China to treat mild or common damp-toxin obstructive pulmonary syndrome in COVID-19 patients. However, the active ingredients of XFBD have not been extensively studied, and its mechanism of action in the treatment of ALI is not well understood. AIM OF THE STUDY: The purpose of this study was to investigate the mechanism of action of XFBD in treating ALI in rats, by evaluating its active components. MATERIALS AND METHODS: Firstly, the chemical composition of XFBD was identified using ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry. The potential targets of XFBD for ALI treatment were predicted using network pharmacological analysis. Finally, the molecular mechanism of XFBD was validated using a RAW264.7 cell inflammation model and a mouse ALI model. RESULTS: A total of 113 compounds were identified in XFBD. Network pharmacology revealed 34 hub targets between the 113 compounds and ALI. The results of Kyoto Encyclopedia of Genes and Genomes and gene ontology analyses indicated that the NF-κB signaling pathway was the main pathway for XFBD in the treatment of ALI. We found that XFBD reduced proinflammatory factor levels in LPS-induced cellular models. By examining the lung wet/dry weight ratio and pathological sections in vivo, XFBD was found that XFBD could alleviate ALI. Immunohistochemistry results showed that XFBD inhibited ALI-induced increases in p-IKK, p-NF-κB p65, and iNOS proteins. In vitro experiments demonstrated that XFBD inhibited LPS-induced activation of the NF-κB pathway. CONCLUSION: This study identified the potential practical components of XFBD, combined with network pharmacology and experimental validation to demonstrate that XFBD can alleviate lung injury caused by ALI by inhibiting the NF-κB signaling pathway.


Asunto(s)
Lesión Pulmonar Aguda , COVID-19 , Ratones , Ratas , Animales , FN-kappa B/metabolismo , Lipopolisacáridos/toxicidad , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Transducción de Señal , Pulmón/patología , Modelos Animales de Enfermedad
12.
Foods ; 11(22)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36429337

RESUMEN

The pericarps of Zanthoxylum bungeanum (ZBP) and leaves of Zanthoxylum bungeanum (ZBL) are popular spices in China, and they have pharmacological activities as well. In this experiment, the volatile organic compounds (VOCs) of the pericarps of Zanthoxylum bungeanum in Sichuan (SJ) and its leaves (SJY) and the pericarps of Zanthoxylum bungeanum in Shaanxi (SHJ) and its leaves (SHJY) were analyzed by headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and headspace solid phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS). The fingerprint of HS-GC-IMS and the heat maps of HS-SPME-GC-MS were established. Principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) were performed. The results showed that a total of 95 components were identified, 62 components identified by HS-SPME-GC-MS and 40 components identified by HS-GC-IMS, of which 7 were the same. The analysis found that SJ and SHJ were obviously distinguished, while SJY and SHJY were not. There were considerably fewer VOCs in the leaves than in the pericarps. In the characterization of the VOCs of ZBL and ZBP, the flavor of ZBP was more acrid and stronger, while the flavor of ZBL was lighter and slightly acrid. Thirteen and eleven differential markers were identified by HS-GC-IMS and HS-SPME-GC-MS, respectively. This is helpful in distinguishing between SHJ and SJ, which contributes to their quality evaluation.

13.
Molecules ; 27(14)2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35889268

RESUMEN

Volatile organic compounds (VOCs) are the main chemical components of Schizonepetae Spica (SS), which have positive effects on the quality evaluation of SS. In this study, HS-SPME-GC-MS (headspace solid-phase microextraction-gas chromatography-mass spectrometry) and HS-GC-IMS (headspace-gas chromatography-ion mobility spectrometry) were performed to characterize the VOCs of SS from six different regions. A total of 82 VOCs were identified. In addition, this work compared the suitability of two instruments to distinguish SS from different habitats. The regional classification using orthogonal partial least squares discriminant analysis (OPLS-DA) shows that the HS-GC-IMS method can classify samples better than the HS-SPME-GC-MS. This study provided a reference method for identification of the SS from different origins.


Asunto(s)
Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Movilidad Iónica , Análisis de los Mínimos Cuadrados , Microextracción en Fase Sólida/métodos , Compuestos Orgánicos Volátiles/análisis
14.
Rapid Commun Mass Spectrom ; 36(20): e9363, 2022 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-35902380

RESUMEN

RATIONALE: Many methods have been reported for the production of rare ginsenosides, including heat treatment, acid hydrolysis, alkaline hydrolysis, enzymatic hydrolysis, and microbial transformation. However, the conversion of original ginsenosides to rare ginsenosides under the dual conditions of citric acid and high-pressure steam sterilization has rarely been reported. METHODS: In this study, a method involving ultrahigh-performance liquid chromatography coupled to ion mobility quadrupole time-of-flight mass spectrometry was developed for analysis of chemical transformation of protopanaxatriol (PPT)-type ginsenosides Rg1 and Re, protopanaxadiol (PPD)-type ginsenoside Rb1 , and total ginsenosides in the dual conditions of citric acid and high-pressure steam sterilization. An internal ginsenoside database containing 126 known ginsenosides and 18 ginsenoside reference compounds was established to identify the transformation products and explore possible transformation pathways and mechanisms. RESULTS: A total of 54 ginsenosides have been preliminarily identified in the transformation products of PPD-type ginsenosides Rg1 and Re, PPD-type ginsenoside Rb1 , and total ginsenosides, and the possible transformation pathways were as follows: Rg1 , Re → 20(S)-Rh12 , 20(R)-Rh12 ; Rg1 , Re → 20(S)-Rh1 , 20(R)-Rh1 → Rk3 , Rh4 , Rh5 ; Rb1 → gypenoside LXXV; Rb1 → 20(S)-Rg3 , 20(R)-Rg3 → Rk1 , Rg5 ; Re → 20(S)-Rg2 , 20(R)-Rg2 → 20(S)-Rf2 , 20(R)-Rf2 , Rg4 , F4 . CONCLUSIONS: The results elucidated the possible transformation pathways and mechanisms of ginsenosides in the dual conditions of citric acid and high-pressure steam sterilization, which were helpful for revealing the mechanisms of ginsenosides and enhanced safety and quality control of pharmaceuticals and nutraceuticals. Meanwhile, a simple, efficient, and practical method was developed for the production of rare ginsenosides, which has the potential to produce diverse rare ginsenosides on an industrial scale.


Asunto(s)
Ginsenósidos , Panax , Cromatografía Liquida , Ácido Cítrico , Ginsenósidos/química , Espectrometría de Masas , Panax/química , Saponinas , Vapor/análisis , Triterpenos
15.
J Ethnopharmacol ; 296: 115472, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35718055

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Xuanfei Baidu prescription, consisting of 13 Chinese medicines, was formulated by academicians Boli Zhang and Professor Qingquan Liu based on their experience in first-line clinical treatment of COVID-19. Xuanfei Baidu granules (XFBD granules) are a proprietary Chinese medicine preparation developed based on Xuanfei Baidu prescription. It is recommended for the treatment of patients with the common wet toxin and lung stagnation syndrome of COVID-19. However, the pharmacokinetic characteristics of its major bioactive components in rats under different physiological and pathological conditions are unclear. MATERIALS AND METHODS: A rapid and sensitive analytical method, ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS/MS), was developed and applied to 24 major bioactive components in normal and ARDS rats after oral administration of XFBD granules. We studied the metabolic process of XFBD granules in vivo to compare the differences in pharmacokinetic parameters between normal and model metabolic processes. RESULTS: This method was successfully applied to the pharmacokinetic investigation of 24 major components of XFBD granules following oral administration in normal and ARDS rats. Eight components, including ephedrine and amygdalin, were more highly absorbed and had shorter Tmax values than the model group; the absorption of six components, such as rhein, decreased in ARDS rats, and there was no significant difference in the absorption of ten components, such as verbenalin and naringin, between the normal and ARDS rats. The results showed that the peak times of other analytes were very short, and 80% of these target constituents were eliminated in both normal and ARDS rats within 6 h except for liquiritigenin and 18ß-glycyrrhetinic acid. CONCLUSIONS: In this study, a rapid and sensitive UPLC-MS/MS analytical method was developed and applied to 24 major bioactive components in normal and ARDS rats after the oral administration of XFBD granules. This will serve to form the basis for further studies on the pharmacokinetic-pharmacodynamic correlation of XFBD granules.


Asunto(s)
COVID-19 , Medicamentos Herbarios Chinos , Síndrome de Dificultad Respiratoria , Administración Oral , Animales , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos , Ratas , Ratas Sprague-Dawley , Espectrometría de Masas en Tándem/métodos
16.
Curr Drug Metab ; 23(2): 150-163, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35168516

RESUMEN

BACKGROUND: Xuanfei Baidu granules (XFBD granules) are based on the prescription of Xuanfei Baidu, which showed promise as a first-line treatment against Corona Virus Disease 2019 (COVID-19) in Wuhan, Hubei. On March 2, 2021, XFBD granules were marketed as a novel drug for epidemic diseases. However, there is little information about the pharmacokinetics and tissue distribution of the main constituents in XFBD granules. METHODS: A sensitive analytical method was developed for detecting the marker components of XFBD granules by ultra-high performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOFMS/ MS), and for studying its pharmacokinetics and tissue distribution by UPLC-QDa. RESULTS: Following an oral administration of a single granule in experimental rats at a dose of 14 g/kg for pharmacokinetic and tissue distribution studies, 42 compounds and nine analytes were identified in XFBD granules. Nine compounds were detected in the lungs and the liver of the rats. Six compounds were detected in the kidneys. Five compounds were detected in the spleen and three were detected in the heart. As it went undetected in the brain, XFBD granules are considered unable to cross the blood-brain barrier. CONCLUSION: A sensitive UPLC-Q-TOF-MS/MS method was established and validated for the quantification of nine components in rat plasma and tissue samples. This method was successfully applied to study the pharmacokinetics and tissue distribution profiles of XFBD granules after their oral administration.


Asunto(s)
COVID-19 , Medicamentos Herbarios Chinos , Administración Oral , Animales , Medicamentos Herbarios Chinos/farmacocinética , Humanos , Ratas , Espectrometría de Masas en Tándem/métodos , Distribución Tisular
17.
J Pharm Biomed Anal ; 206: 114385, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34597841

RESUMEN

Kai-Xin-San (KXS) is a traditional Chinese medicine (TCM) formula containing four herbal medicines: Ginseng Radix Rhizoma, Polygalae Radix, Poria and Acori Tatarinowii Rhizoma. A large number of pharmacological studies in vitro and in vivo have shown that KXS is characterized by anti-depression, anti-Alzheimer's disease, anti-oxidation and other activities. However, the pharmacodynamic substance basis studies of KXS are hitherto quite limited. Here, KXS was identified and determined by ultra-performance liquid chromatography-quadrupole-Orbitrap mass spectrometry (UPLC-Q-Orbitrap MS) and gas chromatography-mass spectrometry (GC-MS). Firstly, the data-dependent acquisition mode (DDA) of UPLC-Q-Orbitrap MS combined with the inclusion list were used to collected the chemical composition. The chemical constituents of KXS were identified by local database on compound discoverer™ 3.1 software and Xcalibur 4.1 software. With the use of this approach, a total of 211 compounds were identified from KXS. Wherein 60 compounds were from Ginseng Radix Rhizoma, 40 compounds were from Poria, and 111 compounds were from Polygala Radix, respectively. Secondly, 105 volatile constituents were identified by GC-MS analysis, which were mainly derived from Acori Tatarinowii Rhizoma. Besides, an adjusted parallel reaction monitoring method was established and validated to quantify the seventeen major compounds in different herbal medicines of KXS, which were chosen as the benchmarked substances to evaluate the quality of KXS. In conclusion, this study provided a generally applicable strategy for global metabolite identification of the complicated components and determination of multi-component content in traditional Chinese medicines.


Asunto(s)
Medicamentos Herbarios Chinos , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas , Espectrometría de Masas
18.
Rapid Commun Mass Spectrom ; 35(21): e9174, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34350664

RESUMEN

RATIONALE: Kaixin San (KXS) is a prescription traditional Chinese medicine (TCM) with the effects of "tonifying the kidney and brain" and "improving memory". The volatile organic compounds (VOCs) in KXS could effectively improve senile dementia and depression, but only few studies have focused on the overall characterization of VOCs in KXS and the quantitative study of the main active components. METHODS: We have developed a strategy to correlate the results from headspace gas chromatography/ion mobility spectrometry (HS-GC/IMS) and headspace gas chromatography/mass spectrometry (HS-GC/MS) for the comprehensive characterization of VOCs in KXS and the quantitative analysis of the main pharmacodynamic substances. RESULTS: A totsal of 68 low molecular weight VOCs were identified in KXS by HS-GC/IMS at room temperature and atmospheric pressure; 117 VOCs were identified and 10 components (isocalamenediol, α-asarone, ß-asarone, methyl eugenol, isoeugenol methyl ether, camphor, anethol, 2,4-di-tert-butylphol, linalool, asarylaldehyde) as the quality markers of KXS based on HS-GC/MS. CONCLUSIONS: This results from this study provide a foundation for quality control, pharmacodynamic mechanism research and further development of KXS, and provides more convincing data supporting the VOCs of other natural products.


Asunto(s)
Medicamentos Herbarios Chinos/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Espectrometría de Movilidad Iónica/métodos , Compuestos Orgánicos Volátiles/análisis , Control de Calidad
19.
Sci Rep ; 11(1): 15284, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315983

RESUMEN

The mental workload of subjects was tested under different lighting conditions, with colour temperatures ranging from 3000 to 6500 K and illuminance ranging from 300 to 1000 lx. We used both psychological and physiological responses for evaluation. The former was based on NASA Task Load Index (NASA-TLX, NASA), and the latter was based on the electroencephalogram (EEG) P3b analysis of event-related potentials using the "oddball" paradigm experimental task. The results show that as illuminance increases, and the response time becomes longer with a colour temperature of 3000 K (P < 0.01). However, when the colour temperature is set at 6500 K, the response time becomes shorter as the illuminance increases (P < 0.01). P3b amplitudes were significantly affected by colour temperature (P = 0.009) and illuminance (P = 0.038) levels. The highest amplitudes occurred at 3000 K and 750 lx, which is consistent with the trend shown by the subjective scale. The data analysis of error rates is not significant. These results suggest that an office environment with a colour temperature of 3000 K and illumination of 750 lx, which exerts the lowest mental workload, is the most suitable for working. However, the interaction between colour temperature and illuminance in affecting the mental workload of participants is not clear. This work provides more appropriate lighting choices with colour temperature and illuminance to reduce people's mental workload in office settings.


Asunto(s)
Color , Iluminación , Salud Mental , Carga de Trabajo , Adulto , Electroencefalografía , Femenino , Humanos , Masculino , Estimulación Luminosa , Tiempo de Reacción , Temperatura
20.
Artículo en Inglés | MEDLINE | ID: mdl-33062019

RESUMEN

The roots of Polygonum multiflorum (PM) (He Shou Wu in Chinese) are one of the most commonly used tonic traditional Chinese medicines (TCMs) in China. PM is traditionally valued for its antiaging, liver- and kidney-tonifying, and hair-blackening effects. However, an increasing number of hepatotoxicity cases induced by PM attract the attention of scholars worldwide. Thus far, the potential liver injury compounds and the mechanism are still uncertain. The aim of this review is to provide comprehensive information on the potential hepatotoxic components and mechanism of PM based on the scientific literature. Moreover, perspectives for future investigations of hepatotoxic components are discussed. This study will build a new foundation for further study on the hepatotoxic components and mechanism of PM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...